Lightweight Diffusion Layer from the kth root of the MDS Matrix
نویسندگان
چکیده
The Maximum Distance Separable (MDS) mapping, used in cryptography deploys complex Galois field multiplications, which consume lots of area in hardware, making it a costly primitive for lightweight cryptography. Recently in lightweight hash function: PHOTON, a matrix denoted as ‘Serial’, which required less area for multiplication, has been multiplied 4 times to achieve a lightweight MDS mapping. But no efficient method has been proposed so far to synthesize such a serial matrix or to find the required number of repetitive multiplications needed to be performed for a given MDS mapping. In this paper, first we provide an generic algorithm to find out a low-cost matrix, which can be multiplied k times to obtain a given MDS mapping. Further, we optimize the algorithm for using in cryptography and show an explicit case study on the MDS mapping of the hash function PHOTON to obtain the ‘Serial’. The work also presents quite a few results which may be interesting for lightweight implementation.
منابع مشابه
Lightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives
Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number ...
متن کاملIACR Transactions on Symmetric Cryptology
Near-MDS matrices provide better trade-offs between security and efficiency compared to constructions based on MDS matrices, which are favored for hardwareoriented designs. We present new designs of lightweight linear diffusion layers by constructing lightweight near-MDS matrices. Firstly generic n×n near-MDS circulant matrices are found for 5 ≤ n ≤ 9. Secondly , the implementation cost of inst...
متن کاملA Deeper Understanding of the XOR Count Distribution in the Context of Lightweight Cryptography
In this paper, we study the behavior of the XOR count distributions under different bases of finite field. XOR count of a field element is a simplified metric to estimate the hardware implementation cost to compute the finite field multiplication of an element. It is an important criterion in the design of lightweight cryptographic primitives, typically to estimate the efficiency of the diffusi...
متن کاملConstruction and Filtration of Lightweight Formalized MDS Matrices
Zhang Shi-Yi, Wang Yong-juan, Gao Yang, Wang Tao Corresponding author: Wang Yong-juan, E-mail: [email protected] Abstract: The 4 4 MDS matrix over 2 F is widely used in the design of block cipher's linear diffusion layers. However, considering the cost of a lightweight cipher's implementation, the sum of XOR operations of a MDS matrix usually plays the role of measure. During the research on t...
متن کاملOn Constructions of MDS Matrices from Companion Matrices for Lightweight Cryptography
Maximum distance separable (MDS) matrices have applications not only in coding theory but also are of great importance in the design of block ciphers and hash functions. It is highly nontrivial to find MDS matrices which could be used in lightweight cryptography. In a crypto 2011 paper, Guo et. al. proposed a new MDS matrix Serial(1, 2, 1, 4) over F28 . This representation has a compact hardwar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014